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1. Introduction

The role of conformal symmetriesin physical theorieshas a rather long his-
tory. In general,the conformal symmetriesof a given spaceare definedas the
symmetrieswhich leavethe metric of thatspaceinvariantup to a scalefactor. In
a four-dimensionalMinkowski spacetimethereare fifteen of such symmetries:
four translations,six Lorentz rotations,onescaletransformation,or dilatation,
andfour so-calledspecialconformal transformations.

One of the earlier applicationsof conformal symmetrieshas beenthe idea
that physicsat very high energyshouldexhibit a conformal invariance,leading
to Ward identities. At lower energiessomeof theseconformalsymmetriesare
brokenandthis leadsto a violation of theWard identities.In particular,the role
of scaletransformationshasbeeninvestigatedin this context in the beginning
of the70’s. For a review of thesedevelopments,seeref. [11.

Another applicationof conformal symmetrieshas occurredin the study of
supergravity.There,the conformalsymmetriesprovidea usefulmechanismfor
constructingdifferent kinds of off-shell formulations.The idea is that a given
Poincarésupergravitymultiplet decomposesinto differentconformalmultiplets.
Theseconformalmultiplets thenserveasbasicbuidingblocks for the construc-
tion of different types of Poincarésupergravitymultiplets. For a review, see
ref. [21.

Outsidefour dimensions,the most importantapplicationsof conformalsym-
metrieshavebeenin a two-dimensionalcontext.It wasPolyakovwho madethe
observationthat two-dimensionalstatistical-mechanicalmodelsat their criti-’

0393-0440/93/s06.00© 1993 — ElsevierSciencePublishersB.V. All rights reserved
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cal point shouldbe conformally invariant [3]. The importantpoint is that in
two dimensionsthe conformal symmetriesdo not only include the usual scale
transformationsbut aninfinity of othersymmetriesaswell. Dueto this fact, two-
dimensionalconformalsymmetriesgive very stringent restrictionson the form
of the correlationfunctionsof thesestatistical-mechanicalmodels.The infinite
numberof two-dimensionalconformalsymmetriesarebetterknown underthe
nameVirasoro symmetriesandthe correspondinginfinite-dimensionalalgebra
is calledthe Virasoroalgebra.

Besidesstatistical-mechanicalmodels,the Virasoro symmetriesalso play a

crucial role in the constructionof stringtheories.Stringtheory canbe described
by a two-dimensionalaction involving the coordinatesof the string andthe
two-dimensionalmetric. Sincethe string coordinatesarescalarsfrom the two-
dimensionalpointof view, onecanconsiderthestringactionasnothingelsethan
a two-dimensionalfield theoryfor abunchof scalarscoupledtotwo-dimensional
gravity. It is well known that suchanaction is conformally invariantandthat is

how the Virasorosymmetriesenterinto the game.
Two-dimensionalconformally invariant theoriesare denotedas Conformal

Field Theories(CFT). A lot of progresshasbeenmadein recentyears in un-

derstandingthe structureof CFT. An importantrole in thesedevelopmentshas
beenplayedby the Virasoroalgebraand its representationtheory.The Virasoro
generatorscanbe assignedto haveconformalspintwo. It is then naturalto ask
oneselfthequestionwhetheronecanextendthe Virasoroalgebraby theaddition

of further generatorsof higher spin. Such extendedalgebras,if they exist, are
usuallycalled “W-algebras”. Similarly, the correspondingextendedconformal
symmetriesarecalled “W-symmetries”.

The study of W-symmetriescan be motivated from severalpointsof view.
First of all, W-symmetriescan be used to gain a better understandingof the
structureof CFT. For instance,it is known that representationsof the Virasoro

algebra for values of the central chargec > 1 require an infinite numberof
primary fields [51.The ideais now that by extendingthe Virasoro symmetryto
a W-symmetryonecanrestrictoneselfto afinitenumberof”W-primary” fields.
Also, certainexceptional,so-calledoff-diagonal,modularinvariantsin CFT can

be understoodas usualdiagonal invariantswith respectto a W-algebra [6].
The second,most important, motivation to investigateW-symmetriesis that

they are “natural” symmetries.Roughlyspeaking,the W-symmetriesform ex-
tensionsof the Virasorosymmetriesin the samewayas in grouptheorySU(N)
transformationsform a naturalextensionof the SU(2) transformations.When
studying SU(2) group theory, it is naturalat somepoint to extendone’shori-
zon to SU(N). Similarly, in the studyof the Virasorosymmetries,oneshould

facesooneror latertheextensionto W-symmetries.The factthat W-symmetries
form a naturalextensionof the Virasorosymmetriescanbe bestseenfrom the
factthat in the last few yearsa variety of physicalmodelshaveemergedwhich
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exhibit a W-symmetry.Thesemodelsrange from Toda field theoriesandma-
trix modelsof two-dimensionalgravity to the theory of nonlineardifferential
equations,like the KP hierarchy.

Thethird motivationfor studyingW-symmetriesis thatthey might beusedfor

theconstructionof newstringmodelsin thesamewayastheVirasorosymmetries
form the startingpoint for the constructionof “ordinary” string models.A first
step in this direction is the gaugingof W-symmetriesandthe constructionof
thecorrespondingso-called“W-gravity” theories.TheseW-gravity theoriescan
thenbeusedfor the constructionof new “W-string” models.

It is the aim of theselecturesto provide a pedagogicalintroductioninto the

subjectof W-symmetries.Forclarity, andto set up our notation,we will first in
section2 give abriefreviewof somebasicpropertiesof the Virasorosymmetries.
In section3 we will discussthe mostsimpleexampleof a W-algebra.This is the
so-calledW3-algebraof ref. [4]. Other W-algebraswill be discussedin section

4. Section 5 dealswith the applicationof W-symmetriesto W-gravity: we will
discussthe gaugingof W-symmetriesandthe structureof W-gravity theories.
The applicationof W-gravity to the constructionof W-string theoriescan be
found in otherreview articles (seebelow) andwill not be treatedhere.Finally,
in section6 I will discusssomeof the recentdevelopmentsin the field.

I havetried to keepthe overlapwith otherreview articlesthat haveappeared

recentlyin the literature to a minimum. The readerwho wants to know more
aboutthe subject is invited to consultthesearticles.Fora generalintroduction
into the subjectof W-symmetries,seeref. [7]. A representativelist of review
articleson W-gravity and W-strings can be found in refs. [8—13]. Finally, I
shouldmentionthat mostof the work reportedherewasdonein collaboration
with otherpeople.Theseinclude:Adel Bilal, Harm-JanBoonstra,MeesdeRoo,
Bernardde Wit, Paul Howe, Chris Pope,Larry Romans,Ergin Sezgin,Shawn
Shen,Kelly StelleandMisha Vasiliev. I would like to thank them for the many
stimulatingdiscussionsI sharedwith them.

2. The Virasoroalgebra

The purposeof this sectionis to give a briefreview of somebasicproperties
of the Virasorosymmetriesandto familiarize the readerwith the notationand
conventionswhich are usedthroughouttheselectures.Due to lack of spaceI
haveto be rather schematic.For moreinformation, see,e.g., the review of ref.
[14].

We considera singlereal free scalarfield / correspondingto the action

s = ~fd2x ~ (1)

where~ = (x°,x
1) are the realcoordinatesof a two-dimensionalworld sheet.
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We will use a Euclideansignaturebut this is not essentialfor our purposes.
Choosinga conformalgaugegpi. = ~ andusingcomplexcoordinatesz, =

x0 + ix1, we canrewrite the action in the following way:

s=~fdzd±a~ç~. (2)

The field equationcorrespondingto this action readsOO~’= 0 andthe general

solution is given by ~5(z,±) = q~(z)+ ~5(±), i.e., the field decomposesinto a
holomorphicpart (/~i(z)andan anti-holomorphicpart ~5(z) ~ For simplicity,
we will often only considerthe holomorphicsectorof the theory in our cal-
culations.It is thenunderstoodthat the samecalculationgoes throughfor the
anti-holomorphicpart.

In a canonicalquantisationof the holomorphicpart of the theory it is con-
venientto considerthe coordinate±as the evolutionparameterand z as the

“space” parameter.The canonicalDirac bracketis given by

= d(z — U)). (3)

The two-dimensionalconformal or Virasorotransformationsaregiven by z —*

� (z) andasimilartransformationfor theanti-holomorphiccoordinates.Indeed,
one can varify that the action (2) is invariant underthe transformationdç5 =

� (z)0~.This transformationis generatedby the holomorphicpart T(~)of the
energy—momentumtensor,which is given by

T(z) = ~3çb(z)i)ç5(z) (4)

and is conservedwith respectto the anti-holomorphiccoordinatez, i.e., UT =

0. Using the basic Dirac bracket (3), one can show that the T(z) satisfy the

following brackets:

{T(z),T(ti)} = /)~~(z—w)(T(z)+ T(w)). (5)

In termsof Fourier componentsoneobtainsthe algebra

[L,
0,L~] = (m—n)Lm+n. (6)

We will call this the“classical” Virasoroalgebrato indicatethat the algebracan

berealisedas a bracket *2~

In CFT theoryoneoften representsa (Dirac or Poisson)bracketby thesingu-
lar termsin the operatorproduct expansion(OPE) of the “coordinates”~ and

~ One might wonder about the reality condition for ~. The idea is that effectively we have
complexifiedeverything,therebyconsideringthe coordinatesz and±asindependentvariables.
One should then also consider the fields /~(z)and ~(:) as independent.At the end one
imposesthe reality condition z = and one is left with one real field ç~.For more on this,
see,e.g., ref. [14].

~2 Sincethe bracketsrefer to a specific free field realisationwe should strictly speakingsay that
the Virasoro algebra is classical with respectto this particular realisation.
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the “momenta” 9ç~.Using this notation,the Dirac bracket (3) is representedby

= ~ + regularpart. (7)

Since the scalar ~ often only occurs via its derivative 3~’J. we give the basic OPE
expansion in terms of A i9~and write

A(z)A(w) = 1 2 + regularpart. (8)

(z — w)

A bracketthuscorrespondsto taking a singlecontractionbetweenthe A’s. Using
this notationwecanwrite T = ~-AAandtheclassicalVirasoroalgebratakesthe
form

2T(w) OT(w)
T(z)T(w) = + + regularpart. (9)

(z—w)2 z—w
In order to proceedfrom the classicalto the quantumVirasoro algebraone

shouldnot only takesinglebut also multiple contractionsbetweentheA’s. Fur-
thermore,oneshoulddefinethe normalorderedproductof two operators.We
usethe following naturalnormalordering,indicatedby roundbrackets(see,e.g.,
ref. [6]):

(AA)(z)=iim{A(z)A(w)—singularpart}. (10)

In the caseof the One-scalarrealisation,we seethat by taking multiple contrac-
tions betweenthe currents,the classicalVirasoroalgebrais deformedinto the
following quantumVirasoroalgebra:

c 2T(w) aT(w)
T ( z ) T (w) = 4 + 2 + + regular part, (11)

2(z—w) (z—w) z—w

with c = 1. The current-independent term at the right-hand side represents a

so-calledcentralextensionof the Virasoroalgebra.In Fouriermodesthe algebra
is given by

[Lm,Ln] (m—n)Lm+n+~c(m3—m)dm+no. (12)

We have seenthat a free real scalar leadsto a central chargec = 1. Other
valuesof the central chargecan be obtainedby addinga so-calledbackground

chargea to the definition of the energy—momentumtensor:

T=~AA+v~aA. (13)

Onethusobtainsa quantumVirasoroalgebrawith central chargegiven by

c= l—24a2. (14)

Note that for any value of c the Virasoro algebra has a sl(2) subalgebragener-
atedby theFouriercomponentsL~

1,L0 andL1. Thissubalgebrais characterised
by the conformal transformations~dz �(z)T(z) with L)

3� = 0.
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3. The W3-algebra

The most simple exampleof a W-symmetry is provided by the W3-algebra

[41. In this case the Virasoro algebrais extendedby a singlegeneratorW of
conformal spin three. The classicalversionof the algebra,indicatedby ~Ji3, iS

given by

2T(w) i)T(w)
T(z)T(w) = + + regularpart.

(z — ?Ly)2 z UI

3W(w) 9~4’(w)
T(z)W(w) = 2 + +regularpart, (15)

(z—w) z—w

2A(w) OA(w)
ft (z)W(w) = 2 + + regularpart,

(z—w) z—w

with A = TT. The w3-algebracan be realisedas a Poissonbracketalgebrain
termsof an arbitrarynumbern of free scalarfields A’ i9qY (1 = 0,..., n — 1)
which satisfythe basicOPE’s

a
11

A’(z)A~(w)= + regular part, (16)
(z — w)2

whereg” are yet undeterminedcoefficients. A convenientparametrisationof
the spin-two andspin-threegeneratorsin termsof thesescalarfields is given by

T = ~g
11A’A~, W= ~deJkAtA1Ak, (17)

where d1,~,are undetermined coefficients andg1~is the inverseof g”. The clas-

sical w3-algebrais then satisfiedif the following identity holds [1 5]:

d(EJ
mdkt),fl = s2 g(

1jgk/)~ (18)

wheres is anarbitraryparameterwhich isfixed by thechoiceof normalisationof
the W generator.It wasnotedin ref. [16] that this identity also occursin five-

dimensional matter coupled to supergravity theories [17]. For a more recent
discussionin this context,seeref. [181. Besidesfour “special” solutionsto this
identity correspondingto n = 5,8, 14 and26, thereexistsasolution for generic
valuesof n given by

d000 = s , dos,,, = —sg~,, (19)

wherethe index i is split into “0” andan (n — 1)-componentindex ~t.

The quantumdeformationW3 of the classicalw3-algebra(15) takesa more
complicated form. Its expression is given by [4]

T(z)T(w) = ~ + 2T(w) + DT(w) + regularpart,
2(z—w) (z—w)

3~4”(w) 0~f’(?i)
T(:) W(w) = + + regularpart,

(z—w) z—w
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c 2T(w) OT(w)W(z)W(w) — 6 + 4 + 3 (20)
3(z — w) (z — w) (z — w)

3 32T(w) 1 03T(w)
+— +—

l0(z—w) 15 z—w

16 / 2A(w) 0A(w)\
+ 22 + Sc — U))2 + ~ — U) ) + regularpart,

with A = (TT) — ~82T.
In orderto find realisationsof the quantumW

3-algebra,the T and W gener-

ators areparametrisedas follows [15, 16]:

T = ~g~1(A’A~) + ~ha1A~’, (21)

W = ~dtfk(A’AjA”) + 2v’~e~1(A’A~’)+ 2J~A”, (22)

where g11,a,, d1Jk,e,~and J areyet undeterminedcoefficients.Notethatwith the
aboveansatzthe spin-twogeneratorT ( z) alreadysatisfiesthe Virasoroalgebra
with centralchargec = n — 24a,a’. The requirementthat this ansatzfor the
generatorssatisfiesthe algebra (20) leads to a systemof five equationsfor the
unknowncoefficients.Fromit, onecanderivethefollowing n-scalarrealisation
[16]:

T = ~(A0A0) + ‘ha0A~ + T~, (23)

W = —~-(A0A0A0) — ‘hao(AoA~)— ~a~A~’+ 2(A0T~)+

Note that only the free scalarçl~occursexplicitly in the aboverealisation.The
othern — 1 scalarsare representedby T~,which commutes with A0 and satisfies
a Virasoro algebrawith centralchargegiven by c~= ~c + ~. The backgrounnd
chargea0 is relatedto the central chargeparameterc via c = 2(1 — 1 6ag).The
resulting realisationcoincidesfor n = 2 with the Fateev—Zamolodchikov(FZ)
two-scalarrealisation [19]. It canbe viewed as a naturalgeneralisationof the
FZ realisationto an arbitrarynumbern of scalarfields.

4. Other W-algebras

The W3-algebrais the most simpleexampleof a higher-spinextensionof the
Virasoroalgebra.Morecomplicatedexamplesexistaswell. Onecandivide them
into two classes.The first classconsistsof algebraswhich only containafinite
numberof higher-spingeneratorsof maximumspin s = N. Such algebrasare
genericallydenotedas WN-algebras.They were first discussedin refs. [19,20].
Theyall sharethe propertywith the W3-algebrathat they arenonlinearalgebras:
The OPE of two generatorsis in generala polynomial in the generators.The
WN-algebrasare thereforeno Lie algebrasof the ordinary type. If the algebra
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containsoneor moresupersymmetrygeneratorsof conformalspin s = 3/2 this
is often specified by calling the algebra a super- WN-algebra.

The otherclassof W-algebrasto consideraretheoneswhichcontainan infinite
numberof higher-spingeneratorswith, often, eachspin occurring once.These

algebrasaregenericallydenotedas W~-algebrasandwerefirst discussedin ref.
[21]. The supersymmetriconesarecalledsuper-W~-algebras.In contrastto the

WN-typealgebrasthe W~-algebrasarelinear, i.e.,theyare (infinite-dimensional)
Lie algebras.The reasonof this differenceis easyto understand.Sincethe WN-

algebrascontaina finite numberof generators,anyexpressionin anOPEthathas
spin higher than the maximum spin s = N mustbe expressedas a polynomial
in the finite numberof generatorssincegeneratorswith spin higher thanN do
not occur, by assumption. This is the origin of the nonlinear structure of the

WN-algebra.In caseof the W~-algebrassuchnonlinearitiescanbeavoideddue
to the infinite numberof generatorswith ever increasingspin.

In this section we will treat an example of a W~-type algebra. The example
is the N = 2 super-W~-algebra[22], where the N = 2 indicatesthat there
are two supersymmetries.It is a supersymmetricextensionof the W~-a1gebra
of ref. [21]. We will discussthis particular algebrain much analogywith the
W3-algebraof the previoussection.

The classical N = 2 super-U’~-algebra[23] is generatedby an infinite set of

currents?J)~~of (super-)conformalspins = 1/2,1,3/2,2 Eachgenerator
is a superfielddependingon the superspacecoordinatesZ = (z,0). Each su-
perfield containstwo conformal field componentsof spin s and s + 1/2. The
N = 2 super-w~-algebrais an extensionof the N = 2 super-Virasoroalgebra
which is generatedby {w ~ U) (3/2)

0 U)~
312~

u)~’~(1 )wW (2) = —2 12 + regularpart,

w(3/2)(l)wW(2) = 0
12w~— 1D2WW

2 z12

01202?iJ(1)
+ +regularpart, (24)

‘12

w
t312~(l)w~312~(2)— 3O

12w~
3/2~— 1D

2w
t312~

— 2 zf
2 2 z12

01202w(3/2)
+ + regular part,

where8 = 8~,012 = 01 —02,z12 = — z2 + 012 andthe superspacedifferential
operatorD is definedby

D=0/00—08. (25)

Furthermore, we have used the short-handnotation w ~ (1) to indicate
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~ (Z1). The full algebrais given by

012w(s+t 1/2)
= —2 + regular part (26)

‘12

for s and t integerandby

0 0,~t3/2)
~J)(S) (1 )w~’~(2) = L)12S+112{ (s + I — 3) 12

— 1 D2w’
3t2~ + (s — 4) Oi

282w(~t_3/2)} (27)

+ regularpart

in all othercaseswith s, t ~ 1/2. The OPE’s wheresand/or I equals1/2 canbe
found in ref. [25]. By definition, the symbol s~2is equalto zero fors evenand
1 for s odd.

The classicalN = 2 super-w~-algebracan be realisedas a Poissonbracket

algebrain termsof two realscalarsuperfields~ andç~whosebasicOPEaregiven
by

q~(I)çb(2)= —lnz12 + regularpart. (28)

The fact that two scalarsuperfieldsareneededis dueto the N = 2 supersym-
metry,whoserealisationrequiresat leasttwo N = 1 superfields.In termsof ~/
and~ the generatorsaregiven by

JJ)(S) = (0~)sD~5D~ (sinteger), (29)

= (0~)s~h’
2Dq~+ ~D{D~(0ç5)~3”2Dc5} (s half-integer)

The quantumdeformationN = 2 super-ft~of the classicalN = 2 super-
U)~-algebratakesa rathercomplicatedform. Its genericexpressionis given by
[24,25]

s+t—1/2 0 ft~(S+tU) 2

= > J~(D
1,D2A) 12 ~

u=l/2 —12

012(s+t)12
+c(s,t;~) (12)S+t+1/22(S+t)I, + regular part. (30)

The structurefunctions J~(D1,D2A)are polynomials in the supercovariant
derivativesof degree2u — 1, whoseexplicit form is given in ref. [25]. The same
referencealso givesan explicit expressionfor the central chargesc(s, I;).). The

arbitraryparameter)Lis relatedto a choiceof basisof the algebra[24]. In terms
of A the centralchargec(3/2, 3/2;A) of the Virasorosubalgebrais given by

c = —12(2—1/4). (31)

The main difference in the structureof the classicaland quantum algebra
is that in the classicalcasethe OPE of two currentsof spin s and I contains
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only one current with maximum spin 5,flax whereasin the quantumcasethe
OPEcontainslower-spincurrentswith 1/2 <S < Smaxas well. Theselower-spin
currentsshould be consideredon the samefooting as the central extensionof
the Virasoroalgebra,which canbe viewedas a spin-zerogenerator.

Thegeneratorsof thequantumalgebracanagainbegivenin termsof thescalar

superfieldsç~and ç5. The correspondingexpressionsarecertain polynomialsin
~ andç~.It turns out that it is moreconvenientto give the expressionsin terms
of a supersymmetricBC system.The B, C superfieldsare related to the /, /
superfieldsvia the superbosonisationrule [26]

B = e0, C = ~ (32)

In termsof the B, C superfieldstheexpressionsfor the quantumgeneratorstake
the following bilinearform [24]:

2s—I

= A’ (s,A) (D’B) (D2s_~~C), (33)

wherethe A’ (s.2) are certaincoefficientswhoseexplicit form is given in refs.

[24,25].

5. W-gravity

Whendiscussing“W-gravity”, it is instructive to first considerordinarytwo-
dimensionalgravity andits relationwith theVirasoroalgebra.Ourstartingpoint

is the action (1) correspondingto a free scalarfield (/1 coupledto gravity. Note
that the two-dimensionalmetric field g

01, occursnonpolynomiallyin the action.
However,the correspondingnonlinearitiescanbe understoodfrom a geometric
pointof view: the action (1) is invariant underarbitraryparametrisationsof the
two-dimensionalworld sheetandthe correspondinggaugefield is gp,~,which has
the geometricinterpretationof being the metric tensorof the two-dimensional
world sheet.

Since the action (1) is invariant underthe conformal scaletransformations

g~—~ Agpv, effectively only two of the threecomponentsof g01. occur in (1).
This canbe mademore explicit by going to the complex basisdescribedafter
(1) andsubstitutingthe following parametrisationof the metric tensor:

~( 2h l+hh 34
g~=e ~l+hh 2h ( )

Onethusobtainsthe following expressionfor the Lagrangian:

= 21

= — ~h0/L)~5— + hhih/0/ + (35)
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From this expressionwe seethat only the h and h componentsof the metric

occur. Furthermoreall nonlinearterms in h and h contain both h as well as
h. This meansthat all nonlinearitiesdisappearas soonas we imposethe gauge
condition Ii = 0 (the chiral gauge)or h = 0 (the anti-chiral gauge).

We fill first discusshow the result in the chiral gaugecan be obtainedby

“chiral gauging”of the free Lagrangian

r = ~Dç5Uç1. (36)

Clearly, theactioncorrespondingto this Lagrangianis invariantunderthe Vira-
soro transformationdq5 = �0ç5,wherethe parameter� only dependson z, i.e.,
0� = 0 or � = � (z). The gauging is achievedby the requirementthat the action
is also invariant if the parameterdependson both z as well as ±,i.e.,0� � 0
or � = � (z, ±). To this endwe introducea gaugefield h which transformsin-
homogeneouslyunder� as oh = ~J�+ .... The remarkable thing is that, if one
now appliesthe Noetherprocedurein orderto obtain a gauge-invariantaction,

the procedurestopsafter the first step,which correspondsto addingto the free
actiona term of the form gaugefield timescurrent.The final result thustakes
the form

£.= ~0~53~5—hT, (37)

whereT is theenergy—momentumtensorgivenby (4). The transformationrules

of q~and h that leavethe action invariant aregiven by

= �3q~, Oh =~J�+�(8h)—h(3�). (38)

Onecanshow that the abovephenomenon,namely that in order to go from
the ungaugedaction to the gaugedaction it is enoughto simply addgaugefield
timescurrent terms to the free action, holds for any closedalgebra (linear or
nonlinear) generatedby a set of currents.Moreprecisely,the following theorem
holds (seealso ref. [8]):

Theorem 1.Supposewe havea set ofcurrents { WA} whichform a closedchiral
bracketalgebra, i.e.,

{WAft~B} =.f~cwwc (39)

with ~WA = 0. Thenthefollowingaction:

r = ~8q~0c~_h
7jWA, (40)

is invariant underthe transformations

Oc~={�AWA,q~}, Oh4 =0f4 +~h4, (41)

with ~h4 = _hB�CfCBA.

The proof of this theorem is rather straightforward. First of all, by construction,
he variationof the kinetic term cancelsagainstthe inhomogeneousvariationof



216 E. Bergshoeff / Extended conformal symmetries

thegaugefield in thegaugefield timescurrentterms.The homogeneousvariation
of thesegaugefield times currentterms,on the otherhand,is given by

O(h4W’
1) = Ah

4W’
1 +h

4{�nWB,J~VA} (42)

= Ah4W
4+ hA�BfBACWC.

Requiring this variation to be zero leadsto the solution Ah
4 = —hB�c.f CB4 as

statedin the theorem.
The nicethingaboutthis theoremis its generalapplicability. Onecannotonly

use it to gaugelinear algebrassuchas the Virasoroalgebraor the (super-)W~-

algebrasbut also to gaugenonlinearalgebrassuchas the classicalteN-algebras.
Thechiral gaugingof the classicalw3-algebrawasfirst given in ref. [1 5]. Since
thesegaugingshavealreadybeendiscussedat otherplacesin the literature,we
will not considerthem here further.The general ideacan be explainedon the

exampleof the usualtwo-dimensionalgravity case.
Insteadof takingthe chiralgaugeIi = 0, onecouldalsoconsidertheanti-chiral

gaugeh = 0. The aboveanalysiswould go throughsimilarly, with everywhere
0 replacedby 0, h by h, � by ~, etc. For instance,the Virasorotransformations
would now be given by O~= ~ Before gauging E~only depends on ±, after

gaugingit dependson both±andz. —

Wenow considerthe nonchiralgaugingwhereboth h andh arenonzero.We

againtreatthe caseof ordinarytwo-dimensionalgravity in detail to explain the
generalprinciple, in the caseof ordinarygravity we know alreadythe answer:
the actionis given by (35). In orderto generalisethis to the caseof W-algebras
it is useful to rewrite (35) in the following way [27]:

= ~

= ~

where T(0ç5—~ J) means:takethefree-scalarrealisation(4) andreplace0/ by
J, and similarly for the barred quantities. Here J andJ are two auxiliary fields
whichdefinethe following set of “nestedcovariantderivatives” [28]:

J=0ç~—hJ, J0(/)—hJ. (44)

Onecaniteratively solve theseequationsas follows:

J=0~—h8~5+hh0c~+,

J=Jç5—h0ç5+hh0ç5+.. (45)

Substitutingtheseexpressionsbackinto the action (43) reproducestheform of
the actiongiven in (35). The niceeffectof the auxiliary fields is that effectively

they give a completesplit of the left-moversand the right-moversof the action.
It is as if onehasto do the chiralgaugingtwice, for eachsectorseparately.
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Like in the chiral case, one can show that the nonchiral gaugingof two-

dimensionalgravitydiscussedin this sectioncanbegeneralisedto any W-algebra
which hasa bracketrealisationof the form (39). The nonchirallygaugedaction
is given by the sameformula (43) but insteadin the last line onehas to sum
overall gaugefield timescurrenttermsand in all thecurrentsonehasto replace
0~by J and0q~by J.This thengivesusthe definitionof W-gravity as a higher-
spin extensionof ordinary two-dimensionalgravity. The nonchiralgaugingof
the w3-algebrawas first given in ref. [28].

We now briefly discussthe extensionfrom classicalto quantumW-gravity.
For more details, see,e.g., the review articles [8—13].When quantisingordi-
nary gravity oneexpectsin generala conformalanomaly.Thecoefficientof the
anomalyis relatedto the centralextensionc of theVirasoroalgebra.The confor-
malanomalyis absentif thetotal centralchargeis zero.The total centralcharge
receivescontributionsfrom the matter sectoras well as the ghostswhich are
neededto gaugefix the Virasoro symmetries.Sincethe ghostscontribute —26
the mattersectormust contribute+ 26 andthatis why acritical string requires
26 free scalars.In the caseof the W-algebrasasimilar thing happens.However,

alsoanomaliesof a newtype arise,which areabsentin the Virasorocase.
This comesaboutas follows. In ordinarygravity the conformalanomalyis re-

latedto thecentralcharge,whichmaybeviewedas theoccurrenceof aspin-zero
generatorin the algebra.The presenceof this lower-spingeneratoris a manifes-
tationof theanomaly.In the caseof the W-algebrasthe samething happensbut
besidesspin-zerogeneratorsother lower-spingeneratorsof nonzerospin arise
as well. Compare,for instance,the classicalw3-algebra(15) with the quantum
W3-algebra (20). In the classicalcasethe spin-threegeneratorsonly give rise to
thecompositespin-fourgenerator.In thequantumcase,however,anadditional
spin-two and an additional spin-zero generator (the central extension)show
up. The central extension corresponds to the usual conformal anomaly.The
extra spin-two generatorcorrespondsto another,so-called matter-dependent,
anomaly.Theseanomalieswere first discussedin ref. [29]. In an anomaly-free
W-gravity theory theseanomaliescan be get rid of by appropriaterenormalisa-
tions of the currents.Therenormalisedcurrentsform a realisationof the quan-

tum W-algebra,which in generalis a deformationof the classicalW-algebra.
A nice way of summarisingthe requirementthat all anomaliescancelis to say
that the BRST operatorcorrespondingto the W-algebramustbe nilpotent [31].
Insteadof cancellingthe conformalanomaly,onecould also considerso-called

induced W-gravity actions.For a discussionof this approach,seeref. [9].
To give an example of how the above-mentioned renormalisations come about

consider the N = 2 super- W~-a1gebra treated in section 4. A similar discussion
for the bosoniccasecanbe found in ref. [30]. The first few classicalcurrents,
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in the A = 0 basis, are given by

= Dç~,

= ~ (46)

= ~

The requirementof cancellingall anomaliesthen leadsto the following renor-
malisations(the correspondingFeynmandiagramcalculationcan be found in
ref. [25]):

= Dq~,

= DçbDq5 + V’~0~, (47)

wt312~=

They areexactlythe bosonisedversionof the first fewcurrents,

= BC,

= (DB)C, (48)

= ~(0B)C — ~(DB)(DC),

generating the quantum N = 2 super-W~-algebra[cf. (33)].

6. Miscellaneous

Having an anomaly-freeW-gravity theoryat our disposal,it is naturalto ask
oneselfthe questionwhether it might be usedto constructa “W-string” model
in the sameway asordinarytwo-dimensionalgravity is usedas a startingpoint

for ordinarystring theories. This possibility was alreadymentionedsometime
ago in ref. [32], where it wasalso suggestedthat the spectrumof such a W-
string should contain higher-spin massless states. More recently, this question
wasreconsideredin refs. [33,34]. In particular, the outcomeof the analysisof
ref. [34] seemsto yield the result that in the masslesssectorthe spectrumof
the W-string is the sameas that of the ordinarystring. It would be interesting
to seewhetherone could give asomewhatfirmer basisto the conceptof a W-
stringby working out in moredetail someof itsproperties,like its interactions,a
“W-geometric” interpretation,the mathematicalpropertiesof the moduli space
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of W-gravity etc.#3 Very recently,interestingnew developmentshavealsooc-
curredin the discussionof noncriticalW-strings [37]. We will not discussthese
issuesfurtherherebut weexpect(andhope) thatmoreresultson W-stringswill
beobtainedin the not too distantfuture.Insteadwewould like to briefly discuss
two new resultsin which we havebeeninvolved ourselves.

The first result is relatedto the questionof finding new realisationsof W-
symmetries. Recently, we investigated in ref. [36] this question for the simplest
caseof the W3-algebra,therebygeneralisingan earlieranalysisof ref. [16]. The
generalisationis obtainedby allowing a spin-fouroperatorwith norm zero in
the OPE of two spin-threecurrents.To be more precise,insteadof the third
equationof (20) we require that the following OPEholds:

V(w) ~3V(w)W(z)W(w) = astn (20) + + , (49)
(z—w)

2 z—w

whereVisa spin-fournull operator,i.e., (VV) = 0. Of course, strictly speaking,

the algebracorrespondingto (49) is not the sameas the W
3-algebragiven in

(20). However, since V is a null operator, it can only generate other null fields
in its OPE.The full set of null operatorsconstitutesan ideal of the algebra. It
is therefore consistent to set all these null operators equal to zero and one thus

obtainsa representationof the W3-algebra.
The analysisof ref. [16] now changesin the sensethat insteadof (18) the

following equationshouldhold:

24ShJ~dSijkl+ 30Sj1k~SJ~1kl— 28OSilklS;kmalam

60.s/~Si~Tklmam+ 24v~Si~~~’Tmklam

+~/~Silu~~(T,nni+ 2Tlmn)aka
ma” — l2Ti3kTjJk

_l6ThJkT,kJ + 6OTifkT’-’,a”a’ — 48TIJkT~’a”a’ (50)

328 yij k I 104 ii k I

+—~-- kij~ a a + ~ kij ~ a a
~f~(TijmTkIm + 4TimJTklm + 4TimjTk’7)a’a~a”a’ = 0,

whereS andT are given by

m 24N
3

SikI = d1~~dkl)m — c(22 + 5c) g(ijgkI) , (51)

TIJk = 4~(_2diJ’e[kIl + 2e(I’dJ)kI — (225)giJak)~ (52)

and the coefficient N3 is the norm of the spin-three generator, i.e., (WW) = N3
(for moredetails,seeref. [36]).

~ Seeref. [351 for a recentdiscussionof the latter point.
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This allows us to take the following lessrestrictiveansatzfor the coefficients
d~k:

d000 = s, d01,,, = tg~,,. , (53)

with s and t free parameters (although one of them may be fixed by choosinga
normalisationfor W).

For two scalars we were able to give a complete classification of all possible

realisations. Besides the solution of ref. [16], which for two scalars reducesto
the solution of ref. [19], we found four more solutions.Firstly, thereare two
inequivalent solutions at central charge c = —2. They are given by

T = ~(A0A0) + ~(A,A1) + ~ +

W = ~(AoAoAo) + ~v(A0A~) + ~ (54)

+(A0A,A,) + /~(A0A~)+ ~(A1A~) +

and

T = ~(A0A0) + ~(A,A,) +

W = ~(AoAoAo) + (A0A,A,) + /~(A0A~) (55)

+

respectively.Secondly,thereare two other solutions at c = 4/5. They are given

by

T =

W = ~j-~(A0A0A0)— ~/~(A0A~) + ~Ag (56)

-(A0A,A,) - /iö(A0A~)+ /~(A,A~)+

and

T = ~(A0A0) + ~(A,A1) +

W = ~(A0A0A0) + (A0A,A,) + ~/Th(A0A’,) (57)

—‘i~(A~A,) — ~

The second and fourth realisations also occur in ref. [38] as specifictruncations

of a nonlinear W~-algebra. It remainsto be investigatedwhetherthe first and
third realisations follow from other construction procedures as well.

The second result we would like to briefly discuss here has to do with an
interestingrelationbetweenW~-symmetriesandself-dualgravity in 2 + 2 di-
mensions[39]. Self-dualgravity theoriesin 2 + 2 dimensionsalso occuras the
low-energy limit of the N = 2 superstring[40]. Recently, a supersymmetric
version of aself-dual gravity theory in 2 + 2 dimensionshasbeenconstructed

[41]. Very recently, we constructeda new self-dualsupergravitytheory [421.
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Our starting point is the new minimal formulationof ref. [43]. The basicob-
servationis that the supergravitytransformationrules can be written in the
following Yang—Mills-like form [44,45]:

~‘—~ ab I— ab 1- ab
= ~�+y/jy/ + ~—Y~L’~

t~

= ycdj~cdab(Q)�+~tab(V+)f± (58)

0pab(y~) = +y~D~(Q_)yi~P+

where D,, (Q) is the supercovariant derivative and the Q covariantization
in the last line acts on the fermionic as well as the vectorial indices of ~
Furthermore,

rs ab ab~ \ ~ab

= Wp ke,W) ,~

= ~ + ~
We see that the role of the Yang—Mills group is played by the Lorentzgroup,
which in 2 + 2 dimensions is S0(2,2) = SO(2,1) ® SO(2,1). This suggeststo
impose the following self-dualitycondition,which effectivelyeliminatesoneof
the SO(2, 1) factors of the SO(2,2) Lorentz group:

ab — 1 abcd
— ~� Wcd+,

D ab((-) \ — I abefj~
~‘-cd ‘~—) — ~� cdef

tab(V) =

These self-duality equations are specialsolutions to the field equationscorre-

spondingto the following R
2-typeaction:

e’i(R2) = ~

2tab(V+)t’~(V+) +

+ yy1ab(Rcd~~b(Q_)+ R~d(Q)), (61)

where w~= w,~++ i~i’~.For moredetails,seeref. [42].
Theinterestingnew featureof this new self-dualsupergravitytheory is thatwe

are now dealingwith a torsionfulRiemanncurvature.The self-dualityequation
(60) then does not imply that the Ricci tensorvanishes.Instead,theRicci tensor

is proportional to torsion-dependent terms. It is interesting to investigatethe
implicationsof this fact.
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